3D Bioplotter Research Papers

Displaying all papers about Mesoporous Calcium-Silicate (3 results)

Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair

Ceramics International 2021 Volume 47, Issue 13, Pages 18905-18912

Calcium silicate (CS) composite bone tissue engineering scaffolds were three-dimensionally printed using titanium metallic powders as the second strengthening phase for overcoming the inherent brittleness and fast degradability. In order to promote the sintering process of all composite scaffolds, mesoporous structure was further introduced into sol-gel-derived CS powders obtaining mesoporous CS (MCS) with larger surface area. The influences of mesoporous structure, sintering temperature and Ti content have been investigated through comparisons of the final scaffold composition, microstructure, compressive strength and in vitro stability. Results showed that CS matrix materials reacted with Ti could form less degradable CaTiO3 and TiC ceramic…

Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair

Journal of Materials Science 2016 Volume 51, Issue 2, Pages 836-844

In the study, we developed hierarchical composite scaffolds by 3D printing technique with mesoporous CaSiO3 containing controlled amounts of Ce substitution in Ca–Si system. The scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity above 70 %, combined with a relative high compressive strength (~7 MPa). These properties are essential for enhancing bone ingrowth in tissue engineering. The in vitro biological properties of apatite formation, cell proliferation, and differentiation were characterized on CeO2-MCS scaffolds and MCS scaffolds. Results indicated that CeO2-MCS scaffolds induced similar apatite deposition and cell attachment of human bone marrow stromal…

The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds

Microporous and Mesoporous Materials 2016 Volume 241, Issue 15, Pages 11–20

Development of 3D porous scaffolds with proper mechanical strength is crucial in bone tissue engineering. In this study, calcium sulfate hemihydrate (CSH) cement was functionally incorporated into mesoporous calcium silicate (MCS) through a 3D printing technique in order to improve the scaffold strength. Compared to printed MCS scaffolds, the characterizations revealed that 20% CSH incorporation had enhanced their compressive strength by 2 times via 4 weeks’ hydration. Furthermore, CSH incorporation prevented the fast pH value rise and achieved a balanced degradation rate. SEM observations showed a good apatite formation on the surfaces of both MCS and MCS/CSH scaffolds. Cellular experiments…